Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
J Med Virol ; 95(6): e28846, 2023 06.
Artigo em Inglês | MEDLINE | ID: covidwho-20245127

RESUMO

Since the first SARS-CoV-2 outbreak in late 2019, the SARS-CoV-2 genome has harbored multiple mutations, especially spike protein mutations. The currently fast-spreading Omicron variant that manifests without symptoms or with upper respiratory diseases has been recognized as a serious global public health problem. However, its pathological mechanism is largely unknown. In this work, rhesus macaques, hamsters, and BALB/C mice were employed as animal models to explore the pathogenesis of Omicron (B.1.1.529). Notably, Omicron (B.1.1.529) infected the nasal turbinates, tracheae, bronchi, and lungs of hamsters and BALB/C mice with higher viral loads than in those of rhesus macaques. Severe histopathological damage and inflammatory responses were observed in the lungs of Omicron (B.1.1.529)-infected animals. In addition, viral replication was found in multiple extrapulmonary organs. Results indicated that hamsters and BALB/c mice are potential animal models for studies on the development of drugs/vaccines and therapies for Omicron (B.1.1.529).


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Cricetinae , Macaca mulatta , Camundongos Endogâmicos BALB C , Brônquios
2.
Nat Commun ; 14(1): 2962, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: covidwho-20243557

RESUMO

Herd immunity achieved through mass vaccination is an effective approach to prevent contagious diseases. Nonetheless, emerging SARS-CoV-2 variants with frequent mutations largely evaded humoral immunity induced by Spike-based COVID-19 vaccines. Herein, we develop a lipid nanoparticle (LNP)-formulated mRNA-based T-cell-inducing antigen, which targeted three SARS-CoV-2 proteome regions that enriched human HLA-I epitopes (HLA-EPs). Immunization of HLA-EPs induces potent cellular responses to prevent SARS-CoV-2 infection in humanized HLA-A*02:01/DR1 and HLA-A*11:01/DR1 transgenic mice. Of note, the sequences of HLA-EPs are highly conserved among SARS-CoV-2 variants of concern. In humanized HLA-transgenic mice and female rhesus macaques, dual immunization with the LNP-formulated mRNAs encoding HLA-EPs and the receptor-binding domain of the SARS-CoV-2 B.1.351 variant (RBDbeta) is more efficacious in preventing infection of SARS-CoV-2 Beta and Omicron BA.1 variants than single immunization of LNP-RBDbeta. This study demonstrates the necessity to strengthen the vaccine effectiveness by comprehensively stimulating both humoral and cellular responses, thereby offering insight for optimizing the design of COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Feminino , Humanos , Vacinas contra COVID-19 , Macaca mulatta , Epitopos , Anticorpos , Camundongos Transgênicos , Linfócitos T , Antígenos HLA-A
3.
PLoS One ; 18(5): e0275082, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-20237361

RESUMO

A SARS-CoV-2 DNA vaccine targeting the spike protein and delivered by jet injection, nCOV-S(JET), previously shown to protect wild-type and immunosuppressed Syrian hamsters (Mesocricetus auratus), was evaluated via two needle-free delivery methods in rhesus macaques (Macaca mulatta). The methods included intramuscular delivery of 2 mg per vaccination with the PharmaJet Stratis device and intradermal delivery of 0.4 mg per vaccination with the PharmaJet Tropis device. We hypothesized that the nCOV-S(JET) vaccine would mount detectable neutralizing antibody responses when delivered by needle-free jet injection by either the intradermal or intramuscular route. When delivered intramuscularly, the vaccines elicited neutralizing and variant (Beta, Gamma, and Delta) cross-neutralizing antibodies against SARS-CoV-2 in all six animals after three vaccinations. The neutralizing response to Omicron was lower with only 4 of 6 animals responding. When delivered at a lower dose by the intradermal route, strong neutralizing antibody responses were only detected in two of six animals. This study confirms that a vaccine previously shown to protect in a hamster model can elicit neutralizing and cross-neutralizing antibodies against SARS-CoV-2 in nonhuman primates. We posit that nCOV-S(JET) has the potential for use as booster vaccine in heterologous vaccination strategies against COVID-19.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Vacinas contra COVID-19 , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Vacinação/métodos , Injeções a Jato , Anticorpos Antivirais , Imunogenicidade da Vacina , Glicoproteína da Espícula de Coronavírus
4.
Front Immunol ; 14: 1161571, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2318058

RESUMO

The magnitude and duration of immune response to COVID-19 vaccination in older adults are known to be adversely affected due to immunosenescence and inflammaging. The threat of emerging variants warrants studies on immune response in older adults to primary vaccination and booster doses so as to understand the effectiveness of vaccines in countering the threat of emerging variants. Non-human primates (NHPs) are ideal translational models, as the immunological responses in NHPs are similar to those in humans, so it enables us to understand host immune responses to the vaccine. We initially studied humoral immune responses in aged rhesus macaques employing a three-dose regimen of BBV152, an inactivated SARS-CoV-2 vaccine. Initially, the study investigated whether the third dose enhances the neutralizing antibody (Nab) titer against the homologous virus strain (B.1) and variants of concern (Beta and Delta variants) in aged rhesus macaques immunized with BBV152, adjuvanted with Algel/Algel-IMDG (imidazoquinoline). Later, we also attempted to understand cellular immunity in terms of lymphoproliferation against γ-inactivated SARS-CoV-2 B.1 and delta in naïve and vaccinated rhesus macaques after a year of the third dose. Following the three-dose regimen with 6 µg of BBV152 with Algel-IMDG, animals had increased Nab responses across all SARS-CoV-2 variants studied, which suggested the importance of booster dose for the enhanced immune response against SARS-CoV-2-circulating variants. The study also revealed the pronounced cellular immunity against B.1 and delta variants of SARS-CoV-2 in the aged rhesus macaques even after a year of vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Idoso , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes
5.
Signal Transduct Target Ther ; 8(1): 169, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2305969

RESUMO

Effective drugs with broad spectrum safety profile to all people are highly expected to combat COVID-19 caused by SARS-CoV-2. Here we report that nelfinavir, an FDA approved drug for the treatment of HIV infection, is effective against SARS-CoV-2 and COVID-19. Preincubation of nelfinavir could inhibit the activity of the main protease of the SARS-CoV-2 (IC50 = 8.26 µM), while its antiviral activity in Vero E6 cells against a clinical isolate of SARS-CoV-2 was determined to be 2.93 µM (EC50). In comparison with vehicle-treated animals, rhesus macaque prophylactically treated with nelfinavir had significantly lower temperature and significantly reduced virus loads in the nasal and anal swabs of the animals. At necropsy, nelfinavir-treated animals had a significant reduction of the viral replication in the lungs by nearly three orders of magnitude. A prospective clinic study with 37 enrolled treatment-naive patients at Shanghai Public Health Clinical Center, which were randomized (1:1) to nelfinavir and control groups, showed that the nelfinavir treatment could shorten the duration of viral shedding by 5.5 days (9.0 vs. 14.5 days, P = 0.055) and the duration of fever time by 3.8 days (2.8 vs. 6.6 days, P = 0.014) in mild/moderate COVID-19 patients. The antiviral efficiency and clinical benefits in rhesus macaque model and in COVID-19 patients, together with its well-established good safety profile in almost all ages and during pregnancy, indicated that nelfinavir is a highly promising medication with the potential of preventative effect for the treatment of COVID-19.


Assuntos
COVID-19 , Infecções por HIV , Gravidez , Animais , Feminino , Humanos , SARS-CoV-2 , Nelfinavir/farmacologia , Macaca mulatta , Estudos Prospectivos , China , Antivirais/farmacologia
6.
Vaccine ; 41(17): 2837-2845, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2287513

RESUMO

Coronavirus disease 2019 (COVID-19) is an acute and highly pathogenic infectious disease in humans caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Six months after immunization with the SARS-CoV-2 vaccine, however, antibodies are almost depleted. Intradermal immunization could be a new way to solve the problem of nondurable antibody responses against SARS-CoV-2 or the poor immune protection against variant strains. We evaluated the preclinical safety of a SARS-CoV-2 vaccine for intradermal immunization in rhesus monkeys. The results showed that there were no obvious abnormalities in the general clinical condition, food intake, body weight or ophthalmologic examination except for a reaction at the local vaccination site. In the hematology examination, bone marrow imaging, serum biochemistry, and routine urine testing, the related indexes of each group fluctuated to different degrees after administration, but there was no dose-response or time-response correlation. The neutralization antibody and ELISpot results also showed that strong humoral and cellular immunity could be induced after vaccination, and the levels of neutralizing antibodies increased with certain dose- and time-response trends. The results of a repeated-administration toxicity test in rhesus monkeys intradermally inoculated with a SARS-CoV-2 inactivated vaccine showed good safety and immunogenicity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Chlorocebus aethiops , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Macaca mulatta , SARS-CoV-2 , Células Vero , Vacinas Virais
7.
Sci Rep ; 13(1): 5074, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2267004

RESUMO

Influenza virosomes serve as antigen delivery vehicles and pre-existing immunity toward influenza improves the immune responses toward antigens. Here, vaccine efficacy was evaluated in non-human primates with a COVID-19 virosome-based vaccine containing a low dose of RBD protein (15 µg) and the adjuvant 3M-052 (1 µg), displayed together on virosomes. Vaccinated animals (n = 6) received two intramuscular administrations at week 0 and 4 and challenged with SARS-CoV-2 at week 8, together with unvaccinated control animals (n = 4). The vaccine was safe and well tolerated and serum RBD IgG antibodies were induced in all animals and in the nasal washes and bronchoalveolar lavages in the three youngest animals. All control animals became strongly sgRNA positive in BAL, while all vaccinated animals were protected, although the oldest vaccinated animal (V1) was transiently weakly positive. The three youngest animals had also no detectable sgRNA in nasal wash and throat. Cross-strain serum neutralizing antibodies toward Wuhan-like, Alpha, Beta, and Delta viruses were observed in animals with the highest serum titers. Pro-inflammatory cytokines IL-8, CXCL-10 and IL-6 were increased in BALs of infected control animals but not in vaccinated animals. Virosomes-RBD/3M-052 prevented severe SARS-CoV-2, as shown by a lower total lung inflammatory pathology score than control animals.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Macaca mulatta , Virossomos , SARS-CoV-2 , Receptor 7 Toll-Like , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Anticorpos Amplamente Neutralizantes , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes
8.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2278780

RESUMO

The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high-risk patients with COVID-19. As preclinical data are only available for rodent and ferret models, here we assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2, and 4 days postinfection to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model of human infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , Furões , Lactamas , Leucina , Nitrilas , Antivirais
9.
Nat Commun ; 14(1): 1914, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2284905

RESUMO

The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Macrófagos , Inflamação , Citocinas , Glicoproteínas de Membrana , Receptores Imunológicos
10.
Mol Cell Proteomics ; 22(4): 100523, 2023 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2270444

RESUMO

Neurologic manifestations are among the most frequently reported complications of COVID-19. However, given the paucity of tissue samples and the highly infectious nature of the etiologic agent of COVID-19, we have limited information to understand the neuropathogenesis of COVID-19. Therefore, to better understand the impact of COVID-19 on the brain, we used mass-spectrometry-based proteomics with a data-independent acquisition mode to investigate cerebrospinal fluid (CSF) proteins collected from two different nonhuman primates, Rhesus Macaque and African Green Monkeys, for the neurologic effects of the infection. These monkeys exhibited minimal to mild pulmonary pathology but moderate to severe central nervous system (CNS) pathology. Our results indicated that CSF proteome changes after infection resolution corresponded with bronchial virus abundance during early infection and revealed substantial differences between the infected nonhuman primates and their age-matched uninfected controls, suggesting these differences could reflect altered secretion of CNS factors in response to SARS-CoV-2-induced neuropathology. We also observed the infected animals exhibited highly scattered data distributions compared to their corresponding controls indicating the heterogeneity of the CSF proteome change and the host response to the viral infection. Dysregulated CSF proteins were preferentially enriched in functional pathways associated with progressive neurodegenerative disorders, hemostasis, and innate immune responses that could influence neuroinflammatory responses following COVID-19. Mapping these dysregulated proteins to the Human Brain Protein Atlas found that they tended to be enriched in brain regions that exhibit more frequent injury following COVID-19. It, therefore, appears reasonable to speculate that such CSF protein changes could serve as signatures for neurologic injury, identify important regulatory pathways in this process, and potentially reveal therapeutic targets to prevent or attenuate the development of neurologic injuries following COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Chlorocebus aethiops , Proteínas do Líquido Cefalorraquidiano , Proteoma , Macaca mulatta
11.
Front Immunol ; 14: 1085883, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2251618

RESUMO

Introduction: ARS-CoV-2 is a respiratory pathogen currently causing a worldwide pandemic, with resulting pathology of differing severity in humans, from mild illness to severe disease and death. The rhesus macaque model of COVID-19 was utilized to evaluate the added benefit of prophylactic administration of human post-SARS-CoV-2 infection convalescent plasma (CP) on disease progression and severity. Methods: A pharmacokinetic (PK) study using CP in rhesus monkeys preceded the challenge study and revealed the optimal time of tissue distribution for maximal effect. Thereafter, CP was administered prophylactically three days prior to mucosal SARS-CoV-2 viral challenge. Results: Results show similar viral kinetics in mucosal sites over the course of infection independent of administration of CP or normal plasma, or historic controls with no plasma. No changes were noted upon necropsy via histopathology, although there were differences in levels of vRNA in tissues, with both normal and CP seemingly blunting viral loads. Discussion: Results indicate that prophylactic administration with mid-titer CP is not effective in reducing disease severity of SARS-CoV-2 infection in the rhesus COVID-19 disease model.


Assuntos
COVID-19 , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Imunização Passiva/métodos , Soroterapia para COVID-19
12.
Sci Rep ; 13(1): 3274, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: covidwho-2274731

RESUMO

The availability of effective vaccines and a high vaccination rate allowed the recent mitigation, or even withdrawal, of many protective measures for containing the SARS CoV-2 pandemic. At the same time, new and highly mutated variants of the virus are found to have significantly higher transmissibility and reduced vaccine efficacy, thus causing high infection rates during the third year of the pandemic. The combination of reduced measures and increased infectivity poses a particular risk for unvaccinated individuals, including animals susceptible to the virus. Among the latter, non-human primates (NHPs) are particularly vulnerable. They serve as important models in various fields of biomedical research and because of their cognitive capabilities, they receive particular attention in animal welfare regulations around the world. Yet, although they played an extraordinarily important role for developing and testing vaccines against SARS-CoV-2, the protection of captive rhesus monkeys against Covid-19 has rarely been discussed. We here report upon twofold mRNA vaccination of a cohort of 19 elderly rhesus monkeys (Macaca mulatta) against infection by SARS-CoV-2. All animals were closely monitored on possible side effects of vaccination, and were tested for neutralising antibodies against the virus. The data show that vaccination of rhesus monkeys is a safe and reliable measure to protect these animals against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Imunogenicidade da Vacina , Macaca mulatta , SARS-CoV-2 , Vacinação , Vacinas Virais
13.
EBioMedicine ; 84: 104264, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-2265379

RESUMO

BACKGROUND: The COVID-19 pandemic has increased the need for innovative quantitative decision tools to support rapid development of safe and efficacious vaccines against SARS-CoV-2. To meet that need, we developed and applied a model-based meta-analysis (MBMA) approach integrating non-clinical and clinical immunogenicity and protection data. METHODS: A systematic literature review identified studies of vaccines against SARS-CoV-2 in rhesus macaques (RM) and humans. Summary-level data of 13 RM and 8 clinical trials were used in the analysis. A RM MBMA model was developed to quantify the relationship between serum neutralizing (SN) titres after vaccination and peak viral load (VL) post-challenge in RM. The translation of the RM MBMA model to a clinical protection model was then carried out to predict clinical efficacies based on RM data alone. Subsequently, clinical SN and efficacy data were integrated to develop three predictive models of efficacy - a calibrated RM MBMA, a joint (RM-Clinical) MBMA, and the clinical MBMA model. The three models were leveraged to predict efficacies of vaccine candidates not included in the model and efficacies against newer strains of SARS-CoV-2. FINDINGS: Clinical efficacies predicted based on RM data alone were in reasonable agreement with the reported data. The SN titre predicted to provide 50% efficacy was estimated to be about 21% of the mean human convalescent titre level, and that value was consistent across the three models. Clinical efficacies predicted from the MBMA models agreed with reported efficacies for two vaccine candidates (BBV152 and CoronaVac) not included in the modelling and for efficacies against delta variant. INTERPRETATION: The three MBMA models are predictive of protection against SARS-CoV-2 and provide a translational framework to enable early Go/No-Go and study design decisions using non-clinical and/or limited clinical immunogenicity data in the development of novel SARS-CoV-2 vaccines. FUNDING: This study was funded by Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias/prevenção & controle , SARS-CoV-2
14.
Proc Natl Acad Sci U S A ; 120(11): e2221713120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2269470

RESUMO

The recently emerged Omicron subvariants XBB and BQ.1.1 have presented striking immune evasion against most monoclonal neutralizing antibodies and convalescent plasma. Therefore, it is essential to develop broad-spectrum COVID-19 vaccines to combat current and future emerging variants. Here, we found that the human IgG Fc-conjugated RBD of the original SARS-CoV-2 strain (WA1) plus a novel STING agonist-based adjuvant CF501 (CF501/RBD-Fc) could induce highly potent and durable broad-neutralizing antibody (bnAb) responses against Omicron subvariants, including BQ.1.1 and XBB in rhesus macaques with NT50s ranging from 2,118 to 61,742 after three doses. A decline of 0.9- to 4.7-fold was observed in the neutralization activity of sera in the CF501/RBD-Fc group against BA.2.2, BA.2.9, BA.5, BA.2.75, and BF.7 relative to D614G after three doses, while a significant decline of NT50 against BQ.1.1 (26.9-fold) and XBB (22.5-fold) relative to D614G. However, the bnAbs were still effective in neutralizing BQ.1.1 and XBB infection. These results suggest that the conservative but nondominant epitopes in RBD could be stimulated by CF501 to generate bnAbs, providing a proof-of-concept for using "nonchangeable against changeables" strategy to develop pan-sarbecovirus vaccines against sarbecoviruses, including SARS-CoV-2 and its variants.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas , Animais , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Anticorpos Amplamente Neutralizantes , Macaca mulatta , Soroterapia para COVID-19 , Anticorpos Monoclonais , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
16.
J Med Virol ; 95(2): e28484, 2023 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2173238

RESUMO

The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , SARS-CoV-2 , Macaca mulatta , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
17.
Immunohorizons ; 6(12): 851-863, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2201353

RESUMO

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease (COVID-19) has led to a pandemic of unprecedented scale. An intriguing feature of the infection is the minimal disease in most children, a demographic at higher risk for other respiratory viral diseases. To investigate age-dependent effects of SARS-CoV-2 pathogenesis, we inoculated two rhesus macaque monkey dam-infant pairs with SARS-CoV-2 and conducted virological and transcriptomic analyses of the respiratory tract and evaluated systemic cytokine and Ab responses. Viral RNA levels in all sampled mucosal secretions were comparable across dam-infant pairs in the respiratory tract. Despite comparable viral loads, adult macaques showed higher IL-6 in serum at day 1 postinfection whereas CXCL10 was induced in all animals. Both groups mounted neutralizing Ab responses, with infants showing a more rapid induction at day 7. Transcriptome analysis of tracheal airway cells isolated at day 14 postinfection revealed significant upregulation of multiple IFN-stimulated genes in infants compared with adults. In contrast, a profibrotic transcriptomic signature with genes associated with cilia structure and function, extracellular matrix composition and metabolism, coagulation, angiogenesis, and hypoxia was induced in adults compared with infants. Our study in rhesus macaque monkey dam-infant pairs suggests age-dependent differential airway responses to SARS-CoV-2 infection and describes a model that can be used to investigate SARS-CoV-2 pathogenesis between infants and adults.


Assuntos
COVID-19 , Animais , Macaca mulatta , Pulmão/patologia , SARS-CoV-2 , Replicação Viral
18.
Front Immunol ; 13: 992062, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2198864

RESUMO

As the global COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, vaccines remain an important tool for preventing the pandemic. The inactivated or subunit vaccines themselves generally exhibit low immunogenicity, which needs adjuvants to improve the immune response. We previously developed a receptor binding domain (RBD)-targeted and self-assembled nanoparticle to elicit a potent immune response in both mice and rhesus macaques. Herein, we further improved the RBD production in the eukaryote system by in situ Crispr/Cas9-engineered CHO cells. By comparing the immune effects of various Toll-like receptor-targeted adjuvants to enhance nanoparticle vaccine immunization, we found that Pam2CSK4, a TLR2/6 agonist, could mostly increase the titers of antigen-specific neutralizing antibodies and durability in humoral immunity. Remarkably, together with Pam2CSK4, the RBD-based nanoparticle vaccine induced a significant Th1-biased immune response and enhanced the differentiation of both memory T cells and follicular helper T cells. We further found that Pam2CSK4 upregulated migration genes and many genes involved in the activation and proliferation of leukocytes. Our data indicate that Pam2CSK4 targeting TLR2, which has been shown to be effective in tuberculosis vaccines, is the optimal adjuvant for the SARS-CoV-2 nanoparticle vaccine, paving the way for an immediate clinical trial.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Cricetinae , Receptor 2 Toll-Like/genética , Cricetulus , Macaca mulatta , Pandemias , SARS-CoV-2 , COVID-19/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Imunidade Celular
19.
Antimicrob Agents Chemother ; 67(1): e0135322, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2161793

RESUMO

Adintrevimab is a human immunoglobulin G1 monoclonal antibody engineered to have broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other SARS-like coronaviruses with pandemic potential. In both Syrian golden hamster and rhesus macaque models, prophylactic administration of a single dose of adintrevimab provided protection against SARS-CoV-2/WA1/2020 infection in a dose-dependent manner, as measured by significant reductions in lung viral load and virus-induced lung pathology, and by inhibition of viral replication in the upper and lower respiratory tract.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , COVID-19/prevenção & controle , Anticorpos Monoclonais/uso terapêutico , Macaca mulatta , Pulmão/patologia , Mesocricetus , Anticorpos Antivirais/uso terapêutico , Glicoproteína da Espícula de Coronavírus
20.
Antiviral Res ; 209: 105492, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2158428

RESUMO

Molnupiravir (EIDD-2801) is a prodrug of a ribonucleoside analogue that is currently being used under a US FDA emergency use authorization for the treatment of mild to moderate COVID-19. We evaluated molnupiravir for efficacy as an oral treatment in the rhesus macaque model of SARS-CoV-2 infection. Twenty non-human primates (NHPs) were challenged with SARS-CoV-2 and treated with 75 mg/kg (n = 8) or 250 mg/kg (n = 8) of molnupiravir twice daily by oral gavage for 7 days. The NHPs were observed for 14 days post-challenge and monitored for clinical signs of disease. After challenge, all groups showed a trend toward increased respiration rates. Treatment with molnupiravir significantly reduced viral RNA levels in bronchoalveolar lavage (BAL) samples at Days 7 and 10. Considering the mild to moderate nature of SARS-CoV-2 infection in the rhesus macaque model, this study highlights the importance of monitoring the viral load in the lung as an indicator of pharmaceutical efficacy for COVID-19 treatments. Additionally, this study provides evidence of the efficacy of molnupiravir which supplements the current ongoing clinical trials of this drug.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Macaca mulatta , Citidina/farmacologia , Citidina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA